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The Single Period Setup

Time 0 Time 1
Known Capital Outlay Unknown Future Payoff

Two most important things in asset pricing:
1 Time value
2 Uncertainty

When is a single period model a good approximation?
1 A zero coupon bond held to maturity
2 A physical project providing no dividends until completed
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Returns

Time 0 Time 1
Known Capital Outlay Unknown Future Payoff

If we have a long position, then
� Initial outlay is X0. Final receipt is X1.
� The total return is R = X1/X0.

If we short sell the asset, then
� Initial outlay is −X0. Final receipt is −X1.
� The total return is R = (−X1)/(−X0) = X1/X0.
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Mean-Standard Deviation Diagram
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1 NoDur  Consumer Nondurables -- Food, Tobacco, Textiles, Apparel, Leather, Toys

2 Durbl  Consumer Durables -- Cars, TVs, Furniture, Household Appliances

3 Manuf  Manufacturing -- Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing

4 Enrgy  Oil, Gas, and Coal Extraction and Products

5 HiTec  Business Equipment -- Computers, Software, and Electronic Equipment

6 Telcm  Telephone and Television Transmission

7 Shops  Wholesale, Retail, and Some Services (Laundries, Repair Shops)

8 Hlth   Healthcare, Medical Equipment, and Drugs

9 Utils  Utilities

10 Other  Other -- Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance

A simple method to represent randomness in returns is through a
two-dimensional mean-standard deviation diagram. (Why not
mean-variance?)

The above figure shows the 10 industry portfolios of the US equity
market. Here we use monthly returns from July 1926 to January 2020
to do the calculation. We report means and standard deviations on an
annualized basis.
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Recap

We invest a total amount of X0 in N assets, with amount X0i for asset i ,
i = 1,2, ...,N. Let wi = X0i/X0 be the weight of asset i . Obviously,∑N

i=1 wi = 1.

The, the portfolio return is

Rp =

∑N
i=1 RiwiX0

X0
=

N∑
i=1

wiRi .

Equivalently,

rp =
N∑

i=1

wi ri , (1)

because
∑N

i=1 wi = 1.
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Portfolio Mean and Variance

Let r̄i = E(ri).

Write r̄ = (r̄1, r̄2, ..., r̄N)> and w = (w1,w2, ...,wN)>.

Let Σ =
[
σij
]

be the N × N variance-covariance matrix, where
σij = ρijσiσj .

Then, the portfolio mean and variance are

r̄p =
N∑

i=1

wi r̄i = w>r̄ , (2)

σ2
p = E

[
(rp − r̄p)2

]
=

N∑
i=1

N∑
j=1

wiwjσij = w>Σw . (3)

Notice that all vectors and matrices are shown in bold.
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Exercise 1
Calculate the mean and variance of an equally weight portfolio on the
10 industry portfolios. Use monthly returns provided in
10 Industry Portfolios.xlsx. (First estimate the means and covariances
for the 10 industry portfolios.)

Excel provides built-in functions for matrix manipulations.
� MMULT(A, B) for matrix multiplications;
� TRANSPOSE(A) for matrix transpose;
� MUNIT(N) to generate a N × N identity matrix;
� A ∗ B gives the element by element multiplication;
� A ∗MUNIT (N) returns the diagonal matrix of A.

Press Ctrl+Shift+Enter, instead of Enter, to get results involving matrix
functions.
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Diversification

Equation (3) allows us to examine the effect of diversification.
Consider the simple case of an equally weighted portfolio consisting of
N assets with the same mean r̄ and same variance σ2. Hence,
rp = 1

N
∑N

i=1 ri and r̄p = r̄ .
If the assets are pairwise uncorrelated, then

σ2
p =

1
N2

N∑
i=1

σ2 =
1
N
σ2. (4)

If the assets are pairwise correlated with the same correlation
coefficient ρ, then

σ2
p = E

[
(rp − r̄)2

]
=

1
N2

E

 N∑
i=1

(ri − r̄)

2

=
1

N2

 N∑
i=1

σ2 +
N∑

j 6=i,j=1

N∑
i=1

ρσ2

 =
1
N
σ2 +

(
1−

1
N

)
ρσ2 = ρσ2 +

1
N

(1− ρ)σ2. (5)

QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 7 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

Diversification
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σ2
p ∝ N−1.

σ2
p → ρσ2, as N →∞.
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The Markowitz Model

There are N assets with expected returns r̄1, r̄2, ..., r̄N , and covariances
σij = ρijσiσj , i , j = 1,2, ...,N.

A portfolio formed with the above assets is defined by the weights
w1,w2, ...,wN .

The quest is to find the minimum-variance portfolio for any (feasible)
desired level of expected return.
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A Mathematical Formulation

Fix the expected return of a portfolio at r̄p. We need to find the
minimum-variance portfolio that achieves r̄p.

min
w1,w2,...,wN

1
2

N∑
i=1

N∑
j=1

wiσijwj , (6)

s.t .
N∑

i=1

wi r̄i = r̄p,

N∑
i=1

wi = 1.

The 1/2 is innocuous and just works to make the solution neater.
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Solution

The Markowitz Model provides the foundation for single-period
investment decisions by explicitly addressing the tradeoff between
expected return and variance of a portfolio.

We solve it using the Lagrangian method. We form the Lagrangian

L =
1
2

N∑
i=1

N∑
j=1

wiσijwj − λ

(
N∑

i=1

wi r̄i − r̄p

)
− ζ

(
N∑

i=1

wi − 1

)
, (7)

where λ and ζ are the Lagrangian Multipliers.
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Solution - continued

Differentiating the Lagrangian w.r.t. the weights and the multipliers, we
get the following first order conditions (F.O.C.s).

N∑
j=1

σijwj − λr̄i − ζ = 0, for i = 1,2, ...,N, (8)

N∑
i=1

wi r̄i = r̄p, (9)

N∑
i=1

wi = 1. (10)

We use the fact σij = σji in (8). We have N + 2 linear equations for
N + 2 unknowns. We can in principle solve the model with linear
algebra methods.
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A Simple Case with Two Assets

Before we present the general solution, we first consider the case of
two individual assets with expected returns r̄1 and r̄2 (r̄1 6= r̄2), and
covariances σ2

1, σ12 and σ2
2. The F.O.C.s are:

w1σ
2
1 + w2σ12 − λr̄1 − ζ = 0,

w1σ12 + w2σ
2
2 − λr̄2 − ζ = 0,

w1r̄1 + w2r̄2 = r̄p,

w1 + w2 = 1.

The last two equations give

w∗1 =
r̄p − r̄2

r̄1 − r̄2
, w∗2 =

r̄1 − r̄p

r̄1 − r̄2
.
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An Illustration

For the simple case of two assets, only one combination of the assets
achieves the required portfolio expected return r̄p. The minimization
problem degenerates.

We use the SSE Stock Composite Index and S&P 500 Index as two
aggregate stocks (or ETFs), for illustration.

r̄i σ2
i σ12 ρ

SSE SCI 0.07347 0.06891 0.002088 4.27%
S&P 500 0.08268 0.03469 0.002088 4.27%

All quantities are annualized when possible.

QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 14 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

The Feasible Set
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A Case of Three Uncorrelated Assets

Now we consider a slightly more complicated case of three
uncorrelated assets, with expected returns r̄1, r̄2 and r̄3, and the same
variance σ2. (σij = 0, i 6= j .) The F.O.C.s are:

w1σ
2 − λr̄1 − ζ = 0,

w2σ
2 − λr̄2 − ζ = 0,

w3σ
2 − λr̄3 − ζ = 0,

w1r̄1 + w2r̄2 + w3r̄3 = r̄p,

w1 + w2 + w3 = 1.

We could no longer solve for the wis from the last two equations.
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A Further Simplification

Let r̄1 = 1, r̄2 = 2 and r̄3 = 3, and the same variance σ2 = 1. The
F.O.C.s are:

w1 − λ− ζ = 0, (11)
w2 − 2λ− ζ = 0, (12)
w3 − 3λ− ζ = 0, (13)

w1 + 2w2 + 3w3 = r̄p, (14)
w1 + w2 + w3 = 1. (15)
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Solution

Now, (11)+(13)-2×(12), we obtain:

w1 − 2w2 + w3 = 0, (16)
w1 + 2w2 + 3w3 = r̄p, (17)

w1 + w2 + w3 = 1. (18)

Then, (18)-(16) gives
w∗2 = 1/3.

And

w∗1 = −r̄p/2 + 4/3,
w∗3 = r̄p/2− 2/3.
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Discussion on the Effect of r̄p and r̄i

We can write the solution as:

w∗2 = 1/3, (19)
w∗1 = −r̄p/2 + 4/3 =1/3− (r̄p/2− 1), (20)
w∗3 = r̄p/2− 2/3 =1/3 + (r̄p/2− 1). (21)

Note the interesting special case of r̄p = 2 (= (r̄1 + r̄2 + r̄3)/3), which
results in w∗1 = w∗2 = w∗3 = 1/3.
� A higher r̄p > 2 increases investment in Asset 3 while decreases

investment in Asset 1.
� A lower r̄p < 2 decreases investment in Asset 3 while increases

investment in Asset 1.
� The level of r̄p does not affect investment in Asset 2 because of

the symmetry in r̄i . No shorting is needed for 4/3 < r̄p < 8/3.
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An Illustration

The minimum variance at r̄p is

σ2
p = w2

1 + w2
2 + w2

3 =
r̄2
p

2
− 2r̄p +

7
3
.

The Global Minimum Variance portfolio is computed at:

r̄G
p = 2,

σG
p =

√
3

3
,

wG
1 = wG

2 = wG
3 =

1
3
.
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The Efficient Frontier
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The Maximum Variance

We ask the opposite question: what is the maximum variance of a
portfolio with expected return r̄p?

1 For the case of two assets, any r̄p is paired with a single σp.
2 For the case of three assets, we can show that, from (17) and (18),

w2 = −2w1 − r̄p + 3
w3 = w1 + r̄p − 2,

σ2
p = w2

1 + w2
2 + w2

3 = 6w2
1 + 2(3r̄p − 8)w1 + 2r̄2

p − 10r̄p + 13.

Obviously, σ2
p is unbounded if short selling is allowed. That is, σ2

p could
be any value in

[1
2 r̄2

p − 2r̄p + 7
3 ,+∞

)
, at any fixed r̄p.
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The Feasible Set
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No Short Selling Constraint

min
w1,w2,...,wN

1
2

N∑
i=1

N∑
j=1

wiσijwj , (22)

s.t .
N∑

i=1

wi r̄i = r̄p,

N∑
i=1

wi = 1,

wi ≥ 0, for i = 1, 2, ...,N.

This is a Quadratic Program with a quadratic objective function and
linear equality and inequality constraints.
We can solve it numerically, e.g., using Excel solver for a relatively
small number of assets and other professional programs for hundreds
or thousands of assets.
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The Efficient Frontier - No Shorting

For the simple case of three assets above, we can find the efficient
frontier explicitly through the solution in (19)-(21).

1 ≤ r̄ < 4/3 4/3 ≤ r̄ ≤ 8/3 8/3 < r̄ ≤ 3
w1 2− r̄p 1/3− (r̄p/2− 1) 0
w2 r̄p − 1 1/3 3− r̄p

w3 0 1/3− (r̄p/2− 1) r̄p − 2

σp

√
2r̄ 2

p − 6r̄p + 5
√

r̄ 2
p /2− 2r̄p + 7/3

√
2r̄ 2

p − 10r̄p + 13

No Shorting Binding Not Binding Binding
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The Efficient Frontier - No Shorting
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The Feasible Set - No Shorting
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How to Deal with Shorting Constraints?

The trick is to watch the area swept by the curve!
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Unconstrained Optimization

A general mathematical formulation of multivariate unconstrained
optimization is as follows.

min
x∈Rn

f (x), (23)

where f (x) is the objective function.

Here, we assume all functions are well-behaved1, that is, sufficiently
smooth, e.g., twice-continuously differentiable.

Maximization problems can be transformed into equivalent
minimizations by simply putting a negative sign before f (x).

max
x∈Rn

f (x) ⇔ min
x∈Rn

−f (x). (24)

1Or the functions can be well approximated by well-behaved ones.
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Univariate Minimization

A univariate unconstrained optimization problem considers an
objective function in one dimension.

min
x∈R

f (x) (25)

Importance of univariate optimization:
1 Many real problems corresponds to finding the optimum of

univariate functions (e.g., optimal hedge ratios of derivatives).
2 Multivariable optimization methods in commercial use today

mostly contain a line search step.
3 Fundamental ideas are best illustrated with univariate cases, and

they usually carry over to multivariate optimization.
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Solution

Definition of a solution x∗:
(i) Global Minimum: There exists a point x∗ s.t. f (x∗) ≤ f (x), ∀x ∈ R.
(ii) Strong Local minimum: There exists a point x∗ s.t. f (x∗) < f (x),
∀x ∈ U(x∗), where U(x∗) is a neighbourhood of x∗.

(iii) Weak Local Minima: There exists a neighbourhood U(x∗) of x∗

s.t. f (x∗) ≤ f (x), ∀x ∈ U(x∗).

Clearly, (i) ; (ii), (ii) ; (i), (ii)⇒ (iii), (iii) ; (ii), (i)⇒ (iii), and
(iii) ; (i).
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An Illustration

x

f(
x)

Global Minimum
Strong Local minimum
Week Local minimum

QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 32 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

Convexity

If the objective function is convex, that is, for any y , z ∈ R,

f (wy + (1− w)z) ≤ wf (y) + (1− w)f (z), 0 ≤ w ≤ 1, (26)

x

f(
x)

then any local minimum is also a global minimum.
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Discussion on Convexity

Convexity is a general concept used in optimization theory. It
describes the property of having an optimum for a function.

Convexity combines both stationarity (stable points) and curvature into
a single concept.

However, it is inconvenient to use for a specific function. For the
well-behaved functions considered here, first derivatives give us a
measure of the rate of change of the function. Second derivatives give
us a measure of curvature of the function or the rate of change of the
first derivatives.
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Discussion on Convexity

x

f(
x)

df(x)/dx>0

df(x)/dx<0

df(x)/dx=0, 

d2f(x)/dx2>0

For a (locally) convex function, the first derivative starts out negative
and becomes positive, with the turning point x∗. Put differently, x∗ is a
(local) minimum of the function f (x).
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Necessary and Sufficient Conditions for an Optimum

For a well-behaved twice continuously differentiable function f (x), the
point x∗ is an optimum iff:

df (x)

dx

∣∣∣∣
x∗

= 0 (stationarity),

and

d2f (x)

dx2

∣∣∣∣
x∗
> 0 (minimum),

or

d2f (x)

dx2

∣∣∣∣
x∗
< 0 (maximum).
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Necessary and Sufficient Conditions for an Optimum

What if df (x)
dx

∣∣
x∗ = d2f (x)

dx2

∣∣
x∗ = 0?

Two examples:
1 For the function f (x) = x4, we know that it have a minimum at

x∗ = 0. And df (x)
dx

∣∣
x∗ = d2f (x)

dx2

∣∣
x∗ = d3f (x)

dx3

∣∣
x∗ = 0, while

d4f (x)
dx4

∣∣
x∗ > 0.

2 For the function f (x) = x3, we know that x∗ = 0 is neither a
maximum nor a minimum. And df (x)

dx

∣∣
x∗ = d2f (x)

dx2

∣∣
x∗ = 0, while

d3f (x)
dx3

∣∣
x∗ > 0.
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Necessary and Sufficient Conditions for an Optimum

Generally, we need to check higher-order derivatives in case of a
stationary point x∗ with a zero second derivative.

1 If the first non-zero derivative is of an odd order, that is:

dnf (x)

dxn

∣∣∣∣
x∗
6= 0, n ≥ 3 and n is odd ,

then x∗ is a saddle/inflection point, not an extremum point.
2 If the first non-zero derivative is of an even order, that is:

dnf (x)

dxn

∣∣∣∣
x∗
6= 0, n ≥ 4 and n is even,

then x∗ is a minimum point if dnf (x)
dxn

∣∣
x∗ > 0, and a maximum point if

dnf (x)
dxn

∣∣
x∗ < 0.
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An Example

min
x∈R

f (x) = x4 − (x − 1)2e−x (27)

-1 -0.5 0 0.5 1 1.5 2

x

2

4

6

8

10
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14

16

f(
x)

=
x4

-(
x-

1)
2
e-x

F.O.C.: 4(x∗)3 − 2(x∗ − 1)e−x∗ + (x∗ − 1)2e−x∗ = 0.⇒ x∗ =?

S.O.C.: 12(x∗)2 + 2(2x∗ − 3)e−x∗ − (x∗ − 1)2e−x∗

= 4(x∗)3 + 12(x∗)2 + 2(x∗ − 2)e−x∗≷ 0?
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Discussions

Three observations:
1 The F.O.C. may be a nonlinear equation which is often as difficult

to solve as the original optimization problem.
2 The sign of higher-order derivatives may be difficult to determine.
3 In practical problems, the objective functions and the derivatives

may only be computed numerically.
In sum, unconstrained univariate optimization problems may not be as
straightforward as you thought.
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Multivariate Optimization

Now we extend to unconstrained minimization of a function in n
dimensions.

min
x∈Rn

f (x), (28)

where f (x) is the twice-continuously differentiable objective function.

We can likewise define global, weak local, and strong local minima, as
well as convexity, in n dimensions.

QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 41 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

Stationarity

A stationary point x∗ of the function f (x) in n dimensions is one
satisfying ∇f (x∗) = 0, where ∇ = ∂

∂x is the Nabla operator with

∇f (x) =
(
∂f (x)
∂x1

, ∂f (x)
∂x2

, ..., ∂f (x)
∂xn

)
.

There are three types of stationary points.
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Necessary Conditions for an Optimum

The conditions are simply multivariate extensions of univariate ones.

Necessary conditions for a weak local minimum

C1. ∇f (x∗) = 0 (stationarity).
C2. ∇2f (x∗) is positive semi-definite. That is, v>∇2f (x∗)v ≥ 0, for all
n × 1 vector v 6= 0.

Here, ∇2f (x) =



∂2f (x)

∂x2
1

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)

∂x2
2
· · · ∂2f (x)

∂x2∂xn

· · · · · · · · · · · ·
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂2f (x)

∂x2
n

 .
It is called the Hessian Matrix after German mathematician Ludwig
Otto Hesse. It describes the local curvature of f (x).
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Sufficient Conditions for an Optimum

The conditions are again simply multivariate extensions of univariate
ones.

Sufficient conditions for a strong local minimum

C1. ∇f (x∗) = 0 (stationarity).
C2. ∇2f (x∗) is positive definite. That is, v>∇2f (x∗)v > 0, for all n × 1
vector v 6= 0.
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The Recipe

1 Correctly formulate the optimization problem.
2 Find a point x∗ that could potentially be a solution (satisfying the

necessary conditions).
3 Verify this point x∗ is certainly a solution (satisfying the sufficient

conditions).
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Example

Consider the point (x∗, y∗) = (0,0).

1 For f (x , y) = x2 + y2, ∇f (x∗, y∗) = 0, and ∇2f (x∗, y∗) =

[
2 0
0 2

]
,

which is positive definite.
2 For f (x , y) = −x2 − y2, ∇f (x∗, y∗) = 0, and

∇2f (x∗, y∗) =

[
−2 0
0 −2

]
, which is negative definite.

(Consider −f (x , y). Then ∇2(−f (x∗, y∗)) is positive definite.)
3 For f (x , y) = x2 − y2, ∇f (x∗, y∗) = 0, and

∇2f (x∗, y∗) =

[
2 2x∗ − 2y∗

2x∗ − 2y∗ −2

]
=

[
2 0
0 −2

]
, which is

indefinite.
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A Different Perspective

Before we turn to constrained optimization, we provide another intuitive
discussion of the methods we covered for unconstrained optimization.
Again, it would help us understand the unconstrained approach, and
more importantly, it can be easily extended to the constrained situation.

We would understand what the second order conditions for optimality
are and also why they are. We will use an algebraic approach,
exploiting the matrix of second derivatives called the Hessian matrix.
Then we will see later that the conditions for the constrained case can
be easily stated in terms of a bordered Hessian matrix2.

2Many applied mathematics students use it for a long time without knowing its
relevance.
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The Univariate Case

The 2nd order approximation to f (x) near x̂ is

f (x) = f (x̂) + fx (x̂)(x − x̂) +
1
2

fxx (x̂)(x − x̂)2. (29)

Hence,

df = fx (x̂)dx +
1
2

fxx (x̂)(dx)2, (30)

where df = f (x)− f (x̂) and dx = x − x̂ .
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The Univariate Case

For a critical point x∗ satisfying fx (x∗) = 0,

df =
1
2

fxx (x∗)(dx)2. (31)

Then, clearly, because (dx)2 > 0, df > 0 if fxx (x∗) > 0. That is to say,
x∗ is a minimum point since f increases regardless of the direction of
change in x around x∗.

Similarly, df < 0 if fxx (x∗) < 0. That is to say, x∗ is a maximum point
since f decreases regardless of the direction of change in x around x∗.

Note that the Hessian matrix for the univariate case is just the 1× 1
matrix [fxx (x∗)].
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The Two-Variable Case

The 2nd order approximation to f (x , y) near (x̂ , ŷ) is

df = fxdx + fydy +
1
2

[fxx (dx)2 + fxydxdy + fyxdydx + fyy (dy)2] (32)

= fxdx + fydy +
1
2

(dx ,dy)H(dx ,dy)>, (33)

where H =

[
fxx fxy
fyx fyy

]
is the Hessian matrix.
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The Two-Variable Case

For a critical point (x∗, y∗) satisfying fx (x∗, y∗) = fy (x∗, y∗) = 0,

df =
1
2

(dx ,dy)H(dx ,dy)>. (34)

Then (x∗, y∗) is a minimum point if H is positive definite such that
(dx ,dy)H(dx ,dy)> > 0 for all (dx ,dy) 6= (0,0).

Similarly, (x∗, y∗) is a maximum point if H is negative definite such that
(dx ,dy)H(dx ,dy)> < 0 for all (dx ,dy) 6= (0,0).
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Exercise 2
Do the analysis for the three-variable case.
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Exercise 2
Do the analysis for the three-variable case.

The 2nd order approximation to f (x , y , z) near (x̂ , ŷ , ẑ) is

df = fxdx + fydy + fzdz +
1
2

(dx ,dy ,dz)H(dx ,dy ,dz)>, (35)

where H =

 fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 is the Hessian matrix.

For a critical point (x∗, y∗, z∗) satisfying fx = fy = fz = 0,

df =
1
2

(dx ,dy ,dz)H(dx ,dy ,dz)>. (36)

Hence (x∗, y∗, z∗) is a minimum point if H is positive definite, and a
maximum point if H is negative definite.
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The n-Variable Case

The 2nd order approximation to f (x1, x2, ..., xn) is

df =
n∑

i=1

fidxi +
1
2

(dx1,dx2, ...,dxn)H(dx1,dx2, ...,dxn)>, (37)

where H =


f11 f12 · · · f1n
f21 f22 · · · f2n
· · · · · · · · · · · ·
fn1 fn2 · · · fnn

 is the Hessian matrix.

For a critical point (x∗1 , x
∗
2 , ..., x

∗
n ) satisfying f1 = f2 = ... = fn = 0,

df =
1
2

(dx1,dx2, ...,dxn)H(dx1,dx2, ...,dxn)>. (38)

Hence (x∗1 , x
∗
2 , ..., x

∗
n ) is a minimum point if H is positive definite, and a

maximum point if H is negative definite.
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The Lagrangian Method

The method of Lagrange multipliers is a strategy for finding the local
maxima and minima of a function subject to equality constraints.

This Lagrangian (or Lagrange) method converts a constrained
optimization problem into an unconstrained one to which the derivative
test applies.

1 Identify the stationary points from the first-order necessary
conditions.

2 Determine whether the stationary points are maxima, minima, or
saddle points, through the definiteness of the bordered Hessian
matrices.
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The Lagrange Theorem
You may find more general and rigorous proof of the Lagrange Theorem elsewhere.
Here we focus on the following version.

The Lagrange Theorem

Consider the optimization problem of maximizing the function f (x) in n dimensions
subject to m equality constraints (m < n).

max
x∈Rn

f (x), (39)

s.t. gj (x) = 0, j = 1, 2, ...,m, (40)

where f (x) and gj (x) are twice continuously differentiable.
Then at a maximum point x∗, there are scalars λ1, λ2, ..., λm, also called Lagrange
Multipliers, such that

∇f (x∗) =
m∑

j=1

λj∇gj (x∗)⇐⇒ ∇f (x∗)−
m∑

j=1

λj∇gj (x∗) = 0. (41)

The gradient of the function is a linear combination of the gradients of the constraints.
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Intuition

Consider a slightly simpler case of maximizing f (x) in n = 3
dimensions subject to an equality constraint g(x) = 0. The Lagrange
Theorem says that at the maximum x∗, ∇f (x∗) = λ∇g(x∗).
So,

1 Why should the gradient of the objective function be proportional
to that of the constraint? Why are the two gradients related at all?

2 Where does the λ come from?
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Intuition: For the Case of a Single Constraint

1 The set of points satisfying g(x) = 0 is a surface in 3 dimensions,
or a (maybe oddly shaped) balloon.

2 The set of points satisfying f (x) = k is another surface in 3
dimensions, or another (maybe oddly shaped) balloon.

3 Take k to be a very large number, larger than the maximum of f (x)
under the constraint. Then the Balloon g(x) = 0 lies inside the
balloon f (x) = k .
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Intuition: For the Case of a Single Constraint

4 Now gradually shrink k , by leaking the air in the outer balloon. At
some point, the outer balloon will touch the inner one at the
maximum under constraint.

5 At the touching point of the maximum, the two balloons should be
tangent, hence their normal vectors, given by their gradients,
should be both perpendicular to the same tangent plane thus
parallel to each other.

6 Recall the Geometrical interpretation of a gradient: The direction
of the gradient is the direction of fastest increase of the function at
a certain point, and its magnitude is the rate of increase in that
direction.

7 Hence, in contrast to the direction of increase, f (x) and g(x) need
not have the same rate of increase since the two balloons may
have different shapes. The scaling constant λ results.

This explanation works for any n if you think of hyper-balloons.
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A Pictorial Illustration

Let n = 2. Consider z = f (x , y) = x2 + y2 and
g(x , y) = (x − 1)2 + 4y2 − 4 = 0. The level curves of f , defined by
x2 + y2 = c, are circles. The constraint is an ellipse.
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Intuition: For the Case of Multiple Constraints

Once we understood the case with one constraint, extension to
multiple constraints are straightforward.

Consider the case of maximizing f (x) in n dimensions subject to m
equality constraints gj(x) = 0.

1 The Lagrange Theorem says that at the maximum x∗,
∇f (x∗) =

∑m
j=1 λj∇gj(x∗).

2 This tells us that any direction of change that is perpendicular to
all the gradients ∇gj must be perpendicular to the gradient ∇f as
well.

3 This in turn means that you cannot increase f without violating at
least one of the constraints.
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The Lagrange Method

We can summary everything by defining a single Lagrangian

L(x1, x2, ..., xn;λ1, λ2, ..., λn) = f (x1, x2, ..., xn)−
m∑

j=1

λjgj(x1, x2, ..., xn).

F.O.C.s:

∂L

∂xi
=

∂f
∂xi
−

m∑
j=1

λ
∂gj

∂xi
= 0, i = 1,2, ...,n,

∂L

∂λj
= −gj(x1, x2, ..., xn) = 0, j = 1,2, ...,m.

In one shot, we obtain n + m equations, the first n from the Lagrange
Theorem and the next m for constraints, with n + m unknowns.
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Second Order Conditions

Now we have identified the stationary points, candidates for extrema.
How could we determine they are actually maxima, minima, or saddle
points?

Naturally, we may wonder wether the argument with Hessian matrix of
a unconstrained optimization problem could be transplanted here.
After all, we have made great efforts to transform a constrained
optimization into an unconstrained one. The answer is “Yes” and “No”.
� “Yes”: We can basically apply a Hessian-based approach to

perform such a job.
� “No”: Now the optimum points must satisfy the constraints which

dictate that for each j , ∇gj · (dx1,dx2, ...,dxn) = 0. Hence
(dx1,dx2, ...,dxn) cannot be arbitrary but confined by all the
constraints. We only need to check optimality of f along the
directions perpendicular to all the gradients of the constraints.
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A Motivational Example

Consider the following maximization problem.

max
x ,y

− x2 − y2, (42)

s.t. x + y − 2 = 0.

The Lagrangian is

L(x , y , λ) = −x2 − y2 − λ(x + y − 2).

F.O.C.s:

−2x∗ − λ∗ = 0,
−2y∗ − λ∗ = 0,

−x∗ − y∗ + 2 = 0.

=⇒ x∗ = 1, y∗ = 1, λ∗ = −2.
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The Hessian

We can calculate the Hessian for the Lagrangian using the F.O.C.s.

H =

 Lxx Lxy Lxλ
Lyx Lyy Lyλ
Lλx Lλy Lλλ

 =

 −2 0 −1
0 −2 −1
−1 −1 0

 .
Note that we have already converted the problem into an
unconstrained one.

If we directly apply the second order conditions for unconstrained
problems, we only need to check whether H is negative definite to
ensure that (x∗, y∗) is a strong local maximum.
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The Hessian

A matrix is negative definite iff the determinants of its leading principal
minors alternate in sign, with the first being negative, that is, using Hk
to denote the k th leading principal minor of H, then (−1)k det(Hk ) > 0.

det (H1) = det ([Lxx ]) = det ([−2]) = −2< 0,

det (H2) = det

([
Lxx Lxy
Lyx Lyy

])
= det

([
−2 0
0 −2

])
= 4> 0,

det (H3) = det

 Lxx Lxy Lxλ
Lyx Lyy Lyλ
Lλx Lλy Lλλ


= det

 −2 0 −1
0 −2 −1
−1 −1 0

 = 4> 0.

The Hessian is NOT negative definite.
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The Bordered Hessian

Although we have converted the problem into an unconstrained one,
we cannot directly use the Hessian test since
∇g(x , y) · (dx ,dy) = dx + dy = 0. The usual argument fails.

The right way to do it is to consider the border Hessian matrices.

det (H1) = det

([
Lxx Lxλ
Lλx Lλλ

])
= det

([
−2 −1
−1 0

])
= −1< 0,

det (H2) = det

 Lxx Lxy Lxλ
Lyx Lyy Lyλ
Lλx Lλy Lλλ


= det

 −2 0 −1
0 −2 −1
−1 −1 0

 = 4> 0.

The “border” is shown in “blue”.
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The Bordered Hessian - General Result

Theorem for the Bordered Hessian
Let f ,g1,g2, ...,gm be twice continuously differentiable functions on
x1, x2, ..., xn, and (x∗1 , x

∗
2 , ..., x

∗
n ) is a critical/stationary point for

L(x1, x2, ..., xn;λ1, λ2, ..., λm) = f −
∑m

j=1 λjgj .

Suppose that the vectors ∇gj , j = 1,2, ...,m, are linearly independent
(no redundant constraint(s) at the critical point).

If the last n −m principal minors of the bordered Hessian H (the
Hessian of L at the critical point) is such that the smallest minor has
sign (−1)m+1 and are alternating in sign, then (x∗1 , x

∗
2 , ..., x

∗
n ) is a local

maximum of f subject to the constraints gj = 0.

Proof. See Introduction to Mathematical Programming, 3rd edition by
Russell C. Walker.
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The Bordered Hessian - General Result

Now we write the bordered Hessian equivalently in the following form.

H =



Lλ1λ1 Lλ1λ2 · · · Lλ1λm Lλ1x1 Lλ1x2 · · · Lλ1xn

Lλ2λ1 Lλ2λ2 · · · Lλ2λm Lλ2x1 Lλ2x2 · · · Lλ2xn

· · · · · · · · · · · · · · · · · · · · · · · ·
Lλmλ1 Lλmλ2 · · · Lλmλm Lλmx1 Lλmx2 · · · Lλmxn

Lx1λ1 Lx1λ2 · · · Lx1λm Lx1x1 Lx1x2 · · · Lx1xn

Lx2λ1 Lx2λ2 · · · Lx2λm Lx2x1 Lx2x2 · · · Lx2xn

· · · · · · · · · · · · · · · · · · · · · · · ·
Lxnλ1 Lxnλ2 · · · Lxnλm Lxnx1 Lxnx2 · · · Lxnxn


.
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The Bordered Hessian - An Illustration

For example, when n = 2 and m = 1, we only need to check the last
n −m = 1 principal minor

H3 =

 Lλ1λ1 Lλ1x1 Lλ1x2

Lx1λ1 Lx1x1 Lx1x2

Lx2λ1 Lx2x1 Lx2x2

 ,
to see if det(H3) > 0.

For the problem in (42),

det(H3) = det

 0 −1 −1
−1 −2 0
−1 0 −2

 = 4, sign(det(H3)) = (−1)(1+1).

We have found a local maximum.
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The Bordered Hessian - Another Illustration

Consider the following maximization problem.

max
x ,y ,z,w

− x2 − y2 − z2 − w2, (43)

s.t. x − z − 2w + 2 = 0.
y + 2z + 3w − 6 = 0.

The Lagrangian is

L(x , y , λ) = −x2 − y2 − z2 − w2

− λ1(x − z − 2w + 2)− λ2(y + 2z + 3w − 6).

F.O.C.s: =⇒ x∗ = 1, y∗ = 1, z∗ = 1, w∗ = 1, λ∗1 = −2, λ∗2 = −2.
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The Bordered Hessian - Another Illustration

The bordered Hessian is

H =



Lλ1λ1 Lλ1λ2 Lλ1x Lλ1y Lλ1z Lλ1w
Lλ2λ1 Lλ2λ2 Lλ2x Lλ2y Lλ2z Lλ2w
Lxλ1 Lxλ2 Lxx Lxy Lxz Lxw
Lyλ1 Lyλ2 Lyx Lyy Lyz Lyw
Lzλ1 Lzλ2 Lzx Lzy Lzz Lzw
Lwλ1 Lwλ2 Lwx Lwy Lwz Lww



=



0 0 −1 0 1 2
0 0 0 −1 −2 −3
−1 0 −2 0 0 0
0 −1 0 −2 0 0
1 −2 0 0 −2 0
2 −3 0 0 0 −2


QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 72 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

The Bordered Hessian - Another Illustration

we need to check the last n −m = 4− 2 = 2 principal minors.

H5 =


0 0 −1 0 1
0 0 0 −1 −2
−1 0 −2 0 0
0 −1 0 −2 0
1 −2 0 0 −2

 ,
sign(det(H5))
= sign(−12)

= (−1)(2+1).

H6 =



0 0 −1 0 1 2
0 0 0 −1 −2 −3
−1 0 −2 0 0 0
0 −1 0 −2 0 0
1 −2 0 0 −2 0
2 −3 0 0 0 −2

 ,
sign(det(H6))

= sign(80)

= (−1)(2+2).
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A Final Word

1 Intuition for the bordered Hessian method: As we have discussed
before, because of the m (linearly independent) equality
constraints, we can only check for directions of change for the
critical point in the subspace Rn−m that is perpendicular to all ∇gj .
This behaviour is captured by the last n−m minors of the Hessian.

2 If the bordered Hessian does not satisfy the conditions for a
maximizer, we cannot generally determine whether it is a
minimizer or a saddle point.

3 To find a minimizer, say x∗, of f , use the fact that x∗ is a maximizer
of −f . Then use the above algorithm.

4 If there are also inequality constraints (hj(x) ≤ 0), e.g., no short
selling, we need to invoke the Karush-Kuhn-Tucker Theorem.3

3We will not cover it for now.
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Minimum Variance Portfolio

Recall the problem of finding the minimum variance portfolio of three
uncorrelated assets, with expected returns r̄1 = 1, r̄2 = 2 and r̄3 = 3,
and the same variance σ2 = 1. (σij = 0, i 6= j .)

L =
1
2

3∑
i=1

w2
i − λ

(
3∑

i=1

iwi − r̄p

)
− ζ

(
3∑

i=1

wi − 1

)
,

where λ and ζ are the Lagrangian Multipliers.
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Minimum Variance Portfolio

We convert the problem into finding a maximum.

L = −1
2

3∑
i=1

w2
i − λ

(
3∑

i=1

iwi − r̄p

)
− ζ

(
3∑

i=1

wi − 1

)
.

The F.O.C.s are:

−w∗1 − λ∗ − ζ∗ = 0,
−w∗2 − 2λ∗ − ζ∗ = 0,
−w∗3 − 3λ∗ − ζ∗ = 0,

−(w∗1 + 2w∗2 + 3w∗3 − r̄p) = 0,
−(w∗1 + w∗2 + w∗3 − 1) = 0.

=⇒ w∗1 = 1/3− (r̄p/2− 1), w∗2 = 1/3, w∗3 = 1/3 + (r̄p/2− 1),

λ∗ = −(r̄p/2− 1), ζ∗ = −1/3 + (r̄p − 2).
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Minimum Variance Portfolio

The bordered Hessian is

H =


0 0 −1 −2 −3
0 0 −1 −1 −1
−1 −1 −1 0 0
−2 −1 0 −1 0
−3 −1 0 0 −1

 .
sign(det(H5)) = sign(det(H)) = sign(−6)= (−1)(2+1).

So (w∗1 ,w
∗
2 ,w

∗
3 ) is indeed a maximizer to this problem, hence a

minimizer to the original problem.
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The General Problem

Now go back to the general mean-variance problem.

L =
1
2

N∑
i=1

N∑
j=1

wiσijwj − λ

(
N∑

i=1

wi r̄i − r̄p

)
− ζ

(
N∑

i=1

wi − 1

)
.

The F.O.C.s are
N∑

j=1

σijw∗j − λ
∗r̄i − ζ∗ = 0, for i = 1,2, ...,N,

N∑
i=1

w∗i r̄i = r̄p,

N∑
i=1

w∗i = 1.
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Two-Fund Separation

Note that the F.O.C.s are all linear functions of (w1,w2,w3, λ, ζ). If
x1 = (w1

1 ,w
1
2 ,w

1
3 , λ

1, ζ1) is a known solution for r̄1
p , and

x2 = (w2
1 ,w

2
2 ,w

2
3 , λ

2, ζ2) is a known solution for r̄2
p , then, ∀α,

αx1 + (1− α)x2 is a solution for αr̄1
p + (1− α)r̄2

p . (Check this yourself.)

The Two-Fund Theorem
Once two efficient funds (minimum variance portfolios) are
established, investors seeking efficient investment in funds, in terms of
mean-variance, can duplicate any efficient portfolio by simply
combining the two.

It is also referred to as the Mutual Fund Separation Theorem.
Investors need not purchase individual securities. Two mutual funds
would be a complete service.
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Two-Fund Separation - Discussions

The Two-Fund Theorem relies crucially on the following assumptions.
1 Investors only care mean and variance.
2 Investors have the same assessment of the means, variances and

covariances.
3 A single-period investment horizon.

All the three assumptions are tenuous in reality. But the theorem
provides a good way to understand the investment process.
� For instance, if investors care more than mean and variance and

invest for multiple periods, the two-fund separation is no long
attained. However, we may have a three-fund separation.4

4See Merton, Robert C., 1973. An intertemporal capital asset pricing model,
Econometrica 41(5), 867-887. We will not cover it in this course.
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Adding a Riskfree Asset

So far we have focused on risky assets with σ > 0.

Introduction of a riskfree asset with σ = 0 enables borrowing and
lending at the riskfree rate rf .

Perhaps surprisingly, adding one more riskfree asset causes a
mathematical degeneracy hence greatly simplifies the shape of the
efficient frontier.

For a portfolio with a weight α (α ≤ 1) in the riskfree asset and a weight
1− α in a risky asset with mean return of r̄ and standard deviation σ,

r̄p = αrf + (1− α)r̄ , σp = (1− α)σ.
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The Efficient Frontier

Let rf = 1. The frontier with three independent risky assets but without
the riskfree asset is described by σp =

√
r̄2
p /2− 2r̄p + 7/3.

Calculate the weights of the tangency portfolio by yourself. (Answer:
(1/9,1/3,5/9))
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The One-Fund Theorem
Any efficient portfolio is a combination of riskfree borrowing/lending
and a single fund of risky assets.

Note that on the aggregate level, borrowing and lending cancel out.
The weights would be 100% in the risky fund, and 0% in the riskfree
asset.

We are ready to study market equilibrium, for instance, the Capital
Asset Pricing Model.

QUANTITATIVE FINANCE SoF, SHUFE May 30, 2020 83 / 85



Setup Mean-Variance Analysis Unconstrained Optimization Constrained Optimization Back to Portfolio Choice

Question

Question on the Tangency Portfolio
What are the weights of the tangency portfolio?
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Question

Question on the Tangency Portfolio
What are the weights of the tangency portfolio?

The frontier of risky assets is the curve σ2
p = r̄2

p /2− 2r̄p + 7/3.
Differentiate both sides, we obtain:

2σpdσp = r̄pdr̄p − 2dr̄p, =⇒
dr̄p

dσp
=

2σp

r̄p − 2

The slope of the tangency line is r̄p−rf
σp

. Let the two slopes equal.

=⇒ r̄p =
14/3− 2rf

2− rf
.

Then w1 = 1/3− (r̄p/2− 1),w2 = 1/3,w3 = 1/3 + (r̄p/2− 1).
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